大数据技术与应用专业是新兴的“互联网+”专业,大数据技术与应用专业将大数据分析挖掘与处理、移动开发与架构、人软件开发、云计算等前沿技术相结合,并引入企业真实项目演练,依托产学界的雄厚师资,旨在培养适应新形势,具有最新思维和技能的“高层次、实用型、国际化”的复合型大数据专业人才。
近几年来,互联网行业发展风起云涌,而移动互联网、电子商务、物联网以及社交媒体的快速发展更促使我们快速进入了大数据时代。截止到目前,人们日常生活中的数据量已经从TB(1024GB=1TB)级别一跃升到PB(1024TB=1PB)、EB(1024PB=1EB)乃至ZB(1024EB=1ZB)级别,数据将逐渐成为重要的生产因素,人们对于海量数据的运用将预示着新一波生产率增长和消费者盈余浪潮的到来。大数据时代,专业的大数据人才必将成为人才市场上的香饽饽。当下,大数据从业人员的两个主要趋势是:1、大数据领域从业人员的薪资将继续增长;2、大数据人才供不应求。
填补大数据技术与应用专业人才巨大缺口的最有效办法无疑还需要依托众多的高等院校来培养输送,但互联网发展一日千里,大数据技术、手段日新月异,企业所需要的非常接地气的人才培养对于传统以培养学术型、科研型人才为主要使命的高校来说还真有些难度。
幸好已经被全社会关注,政府更是一再提倡产教融合、校企合作来创办新型前沿几乎以及“互联网+”专业方向,也已经有一些企业大胆开始了这方面的创新步伐。据我了解,慧科教育就是一家最早尝试高校校企合作的企业,其率先联合各大高校最早开设了互联网营销,这也是它们的优势专业,后来慧科教育集团又先后和北京航空航天大学、对外经济贸易大学、贵州大学、华南理工大学、宜春学院、广东开放大学等高校在硕、本、专各个层次开设了大数据专业方向,在课程体系研发、教学授课及实训实习环节均有来自BAT以及各大行业企业一线的技术大拿参与,所培养人才能够很好地满足企业用人需求。
共享一些主要特色给大家参考:
1.培养模式
采用校企联合模式,校企双方发挥各自优势,在最大限度保证院校办学特色及专业课程设置的前提下,植入相应前沿科技及特色人才岗位需求的企业课程。
2.课程体系
大数据专业的课程体系包括专业基础课、专业核心课、大数据架构设计、企业综合实训等四个部分。
3.实验室建设
阿里巴巴是全球企业间(B2B)电子商务的著名品牌,是目前全球最大的网上贸易市场。作为国内互联网大数据的先驱,阿里巴巴集团曾在2008年就把大数据作为公司的一项基本战略。阿里大数据实验室为移动云计算和大数据专业学生提供企业实战环境以及真实企业项目,平台引入了大数据的采集、挖掘等技术。学生在实验室中完成阿里基于Android、iOS等平台的app开发,并可以在平台上进行数据信息交易、数据挖掘、数据统计与分析等应用,不断提升自己运用、解释、挖掘数据的能力,同时完成新技术领域的探索与实现。
首先,做大数据要有Java语言和Linux操作系统两项基础,在大数据开发上,这两项是学习大数据应用技术的重要基石。
这里不谈具体的课程,只说现在市场主流选用的几代大数据处理框架,对这几代框架技术有相应程度的掌握,基本上找工作也不愁了。
Hadoop
Hadoop是大数据处理第一代框架,至今也仍然占据重要的市场地位,Hadoop必学。
Hadoop核心组件,HDFS、MapReduce和YARN,整个Hadoop生态圈发展至今已有超过20个组件框架,都需要有所了解和掌握。
Spark
Spark是用来弥补基于Hadoop的MapReduce引擎,在处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别喜欢它。
Storm
Storm是开源的分布式实时计算系统。利用Storm可以很容易做到可靠地处理无限的数据流。Apache Storm采用Clojure开发。Storm有很多应用场景,包括实时数据分析、联机学习、持续计算、分布式RPC、ETL等。
Flink
Apache Flink是一个分布式大数据处理引擎,可对有限数据流和无限数据流进行有状态计算。可部署在各种集群环境,对各种大小的数据规模进行快速计算。
原创文章,作者:普尔小编,如若转载,请注明出处:http://www.puerpx.cn/pxwd/5116.html