第一阶段:
Java基础语法
· 分支结构if/switch
· 循环结构for/while/do while
· 方法声明和调用
· 方法重载
· 数组的使用
· 命令行参数、可变参数
IDEA
· IDEA常用设置、常用快捷键
· 自定义模板
· 关联Tomcat
· Web项目案例实操
面向对象编程
· 封装、继承、多态、构造器、包
· 异常处理机制
· 抽象类、接口、内部类
· 常有基础API、集合List/Set/Map
· 泛型、线程的创建和启动
· 深入集合源码分析、常见数据结构解析
· 线程的安全、同步和通信、IO流体系
· 反射、类的加载机制、网络编程
Java8/9/10/11
新特性
· Lambda表达式、方法引用
· 构造器引用、StreamAPI
· jShell(JShell)命令
· 接口的私有方法、Optional加强
· 局部变量的类型推断
· 更简化的编译运行程序等
MySQL
· DML语言、DDL语言、DCL语言
· 分组查询、Join查询、子查询、Union查询、函数
· 流程控制语句、事务的特点、事务的隔离级别等
JDBC
· 使用JDBC完成数据库增删改查操作
· 批处理的操作
· 数据库连接池的原理及应用
· 常见数据库连接池C3P0、DBCP、Druid等
第二阶段:
Maven
· Maven环境搭建
· 本地仓库&中央仓库
· 创建Web工程
· 自动部署
· 持续继承
· 持续部署
Linux
· 系统管理操作&远程登录
· 常用命令
· 软件包管理&企业真题
Shell编程
· 自定义变量与特殊变量
· 运算符
· 条件判断
· 流程控制
· 系统函数&自定义函数
· 常用工具命令
· 面试真题
Hadoop
· Hadoop生态介绍
· Hadoop运行模式
· 源码编译
· HDFS文件系统底层详解
· DN&NN工作机制
· HDFS的API操作
· MapReduce框架原理
· 数据压缩
· Yarn工作机制
· MapReduce案例详解
· Hadoop参数调优
· HDFS存储多目录
· 多磁盘数据均衡
· LZO压缩
· Hadoop基准测试
Zookeeper
· Zookeeper数据结果
· 内部原理
· 选举机制
· Stat结构体
· 监听器
· 分布式安装部署
· API操作
· 实战案例
· 面试真题
· 启动停止脚本
HA+新特性
· HDFS-HA集群配置
Hive
· Hive架构原理
· 安装部署
· 远程连接
· 常见命令及基本数据类型
· DML数据操作
· 查询语句
· Join&排序
· 分桶&函数
· 压缩&存储
· 企业级调优
· 实战案例
· 面试真题
Flume
· Flume架构
· Agent内部原理
· 事务
· 安装部署
· 实战案例
· 自定义Source
· 自定义Sink
· Ganglia监控
Kafka
· 消息队列
· Kafka架构
· 集群部署
· 命令行操作
· 工作流程分析
· 分区分配策略
· 数据写入流程
· 存储策略
· 高阶API
· 低级API
· 拦截器
· 监控
· 高可靠性存储
· 数据可靠性和持久性保证
· ISR机制
· Kafka压测
· 机器数量计算
· 分区数计算
· 启动停止脚本
DataX
· 安装
· 原理
· 数据一致性
· 空值处理
· LZO压缩处理
第三阶段
Scala
· Scala基础入门
· 函数式编程
· 数据结构
· 面向对象编程
· 模式匹配
· 高阶函数
· 特质
· 注解&类型参数
· 隐式转换
· 高级类型
· 案例实操
Spark Core
· 安装部署
· RDD概述
· 编程模型
· 持久化&检查点机制
· DAG
· 算子详解
· RDD编程进阶
· 累加器&广播变量
Spark SQL
· SparkSQL
· DataFrame
· DataSet
· 自定义UDF&UDAF函数
Spark Streaming
· SparkStreaming
· 背压机制原理
· Receiver和Direct模式原理
· Window原理及案例实操
· 7×24 不间断运行&性能考量
Spark内核&优化
· 内核源码详解
· 优化详解
Hbase
· Hbase原理及架构
· 数据读写流程
· API使用
· 与Hive和Sqoop集成
· 企业级调优
Presto
· Presto的安装部署
· 使用Presto执行数仓项目的即席查询模块
Ranger2.0
· 权限管理工具Ranger的安装和使用
Azkaban3.0
· 任务调度工具Azkaban3.0的安装部署
· 使用Azkaban进行项目任务调度,实现电话邮件报警
Kylin3.0
· Kylin的安装部署
· Kylin核心思想
· 使用Kylin对接数据源构建模型
Atlas2.0
· 元数据管理工具Atlas的安装部署
Zabbix
· 集群监控工具Zabbix的安装部署
DolphinScheduler
· 任务调度工具DolphinScheduler的安装部署
· 实现数仓项目任务的自动化调度、配置邮件报警
Superset
· 使用SuperSet对数仓项目的计算结果进行可视化展示
Echarts
· 使用Echarts对数仓项目的计算结果进行可视化展示
Redis
· Redis安装部署
· 五大数据类型
· 总体配置
· 持久化
· 事务
· 发布订阅
· 主从复制
Canal
· 使用Canal实时监控MySQL数据变化采集至实时项目
第四阶段:
Flink
· 运行时架构
· 数据源Source
· Window API
· Water Mark
· 状态编程
· CEP复杂事件处理
Flink SQL
· Flink SQL和Table API详细解读
Flink 内核
· Flink内核源码讲解
· 经典面试题讲解
Git&GitHub
· 安装配置
· 本地库搭建
· 基本操作
· 工作流
· 集中式
ClickHouse
· ClickHouse的安装部署
· 读写机制
· 数据类型
· 执行引擎
DataV
· 使用DataV对实时项目需求计算结果进行可视化展示
sugar
· 结合Springboot对接百度sugar实现数据可视化大屏展示
Maxwell
· 使用Maxwell实时监控MySQL数据变化采集至实时项目
ElasticSearch
· ElasticSearch索引基本操作、案例实操
Kibana
· 通过Kibana配置可视化分析
Springboot
· 利用Springboot开发可视化接口程序
第五阶段:
数据采集平台项目
离线数据仓库项目
Spark实时分析项目
Flink实时数仓项目
推荐和机器学习项目
用户画像项目
在线教育项目
阿里云电商项目
大数据课程有哪些啊?和大数据需要学习哪些技术差不多。我就分享一下我的学习经历吧!
要想学好大数据,需要学好一门语言,java语言或者Scala语言或者python语言。不过我觉得学习java语言相对来说比较占优势的,需要学习javase里面的io流,thread线程,collection集合,socket网络编程等,还需要熟悉Linux操作系统,可以是centos系统,也可以是Ubuntu系统等,接下来就是学习hadoop,
hadoop就是大数据领域用的最多的技术啦,有两模块,一个是hdfs分布式存储系统,和yarn资源调度框架。接下来就是学习hive数据仓库,这门技术使用类sql的hql语句来操作,接下来学习hadoop的数据库hbase,这是一个nosql数据库,具有高吞吐量,低延迟,随机访问的特点,接下来学习日志收集系统flume和消息订阅系统kafka,这两个是用的很多的,还有sqoop导入导出工具,接着学习strom实时处理系统,还有协调系统zookeeper,
还有学习spark生态圈,这个处理的速度很快,这个技术是基于内存计算的技术。如果你把这些都学好了,那你基本可以毕业啦。加油吧,大数据是一个不错的选择。
原创文章,作者:普尔小编,如若转载,请注明出处:http://www.puerpx.cn/pxwd/5923.html