算法原理集成学习(ensemble leaning)通过构建并结合多个学习器来完成学习任务,通过将多个学习器结合,常常可以获得比单一学习器显著优越的效果和泛化能力。集成学习中的基学习器可以是同质的,也可以是异质的。根据个体学习器的生成方式,目前的集成学习方法大致可分为三大类:一类是Bagging,个体学习器之间不存在强依赖关系,可以同时并行化训练和生成,最终结果通常通过投票机制产出,随机森林是这一类型的代表;另一类是Boosting,个体学习器之间存在强依赖关系,后一学习器依赖前一学习器的结果,,因此必须以序列化形式串行生成,我们下节会讲到的Adaboost和GBDT是这一类型的代表;其实还有第三类,叫Stacking,即将初级学习器的输出次级学习器的输入特征,深层神经网络甚至可以理解为Stacking集成学习的变种。
随机森林(Random Forest)是以决策树为基学习器构建的Bagging集成学习算法,其实现简单、计算开销小、并且在很多现实任务中表现出抢眼的效果。其主要通过样本扰动和属性扰动使得集成学习的泛化性显著提高。样本扰动是指通过对初始训练集采样构建每一棵决策树;属性扰动是指对基决策树的每个节点,分裂时从该节点的属性集合中随机选择k个属性(k一般去log(d,2),d为属性数量)。
模型训练代码地址:***/qianshuang/ml-exp
def train():
print(“start training…”)
# 处理训练数据
train_feature, train_target = process_file(train_dir, word_to_id, cat_to_id)
# 模型训练
model.fit(train_feature, train_target)
def test():
print(“start testing…”)
# 处理测试数据
test_feature, test_target = process_file(test_dir, word_to_id, cat_to_id)
# test_predict = model.predict(test_feature) # 返回预测类别
test_predict_proba = model.predict_proba(test_feature) # 返回属于各个类别的概率
test_predict = np.argmax(test_predict_proba, 1) # 返回概率最大的类别标签
# accuracy
true_false = (test_predict == test_target)
accuracy = np.count_nonzero(true_false) / float(len(test_target))
print()
print(“accuracy is %f” % accuracy)
# precision recall f1-score
print()
print(metrics.classification_report(test_target, test_predict, target_names=categories))
# 混淆矩阵
print(“Confusion Matrix…”)
print(metrics.confusion_matrix(test_target, test_predict))
if not os.path.exists(vocab_dir):
# 构建词典表
build_vocab(train_dir, vocab_dir)
categories, cat_to_id = read_category()
words, word_to_id = read_vocab(vocab_dir)
# kNN
# model = neighbors.KNeighborsClassifier()
# decision tree
# model = tree.DecisionTreeClassifier()
# random forest
model = ensemble.RandomForestClassifier(n_estimators=10) # n_estimators为基决策树的数量,一般越大效果越好直至趋于收敛
train()
test()运行结果:
ead_category…
read_vocab…
start training…
start testing…
accuracy is 0.875000
precision recall f1-score support
娱乐 0.83 0.91 0.87 89
房产 0.78 0.83 0.80 104
教育 0.81 0.81 0.81 104
家居 0.75 0.71 0.73 89
游戏 0.93 0.95 0.94 104
时政 0.78 0.79 0.78 94
时尚 0.94 0.89 0.92 91
体育 0.98 0.97 0.97 116
财经 0.95 0.91 0.93 115
科技 0.99 0.96 0.97 94
avg / total 0.88 0.88 0.88 1000
Confusion Matrix…
首先,从今年已经拿到offer同学的情况来看,开发岗的整体占比依然比较大,算法岗虽然有所复苏,但是竞争依然比较激烈,而且算法岗有两个变化,其一是算法岗的薪资待遇与开发岗的差距已经比较小了,其二是算法岗的编程能力要求有所提升,对于计算机大类专业的同学来说,这一变化也会增强自己的就业竞争力。
站在产业发展趋势和技术发展趋势两个角度来看,未来算法工程师的就业空间会进一步扩大,而且算法工程师的能力边界也会逐渐扩展,这一点随着大数据技术开始逐渐落地应用之后,会有越来越明显的体现。工业互联网会全面推动产业资源的数据化,而数据化的背后必然是价值化诉求,而这正是算法工程师主要的任务,所以未来算法工程师的价值会进一步攀升。
前几年算法岗迎来了一个人才需求的爆发期,但是无论从需求规模,还是需求持久性来说,都存在一定的问题,因为更多的需求是一种“提前布局”,很多互联网公司仅仅是为了迎合市场的风口,在受到人工智能产品落地应用的限制之后,算法岗的人才需求也有了明显的下滑。
但是随着产业领域更多的企业实现了业务上云之后,大数据将逐渐开始落地应用,这个过程必然会促使企业从功能需求向数据价值化需求转换,而且在大数据发展的背后是人工智能技术的应用,这些都在夯实算法岗的发展基础,这一次的人才需求才是真正的业务需求,而不仅仅是提前布局,所以目前算法岗有所复苏也就可以理解了。
总体上来说,算法岗的前景还是比较广阔的,算法工程师的成长空间也足够大,如果能够做好规划,未来可以在技术领域走得很远,也可以体现出自身更大的价值。如果说消费互联网是程序员的时代,那么产业互联网很有可能就是算法工程师的时代。
最后,如果有大数据、机器学习相关的问题,或者想获取一些科研资源,可以向我发起咨询。
原创文章,作者:普尔小编,如若转载,请注明出处:http://www.puerpx.cn/pxwd/8961.html